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Abstract

This paper deals with the asymptotic behavior at infinity of

the solutions of the scalar wave equation which satisfy a radiation

condition. A radiation pattern is defined to be the angular factor

of the leading term in the asymptotic expansion. Not every function

can be such a pattern. Necessary and sufficient conditions for a

given ftinction to be a radiation pattern are derived. These condi-

tions also enable one to determine the smallest possible sphere that

can contain all the sources for a given pattern.
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lo Introduction

Consider a scalar radiation field, described by a function U, which

satisfies „

Av * vnj -

with positive real k outside a certain finite region G, Let this function U satisfy

the Sonunerfeld radiation conditions. This function then may be regarded as being

generated by volume sources, surface sources, or point singularities all of which

are inside G.

The radiation pattern of the field is then given by the as:mptotic be-

havior of the function U at infinity. The object of this paper is to investigate

the relation between the radiation pattern and the function U. We shall prove

first that when we introduce spherical coordinates (x) » R(c), any fxmction which

has the properties mentioned above satisfies, for R -> oo, an asymptotic relation

.ikrR

T\]ir^)o^^ fU) ,

where f(4) can be determined. This function £{£,)» which depends on the direction

vector (C) only, is defined to be the radiation pattern, and we may call it the

pattern of U»

We consider next the inverse problem: to determine whether for a given

f(C) there exists a function U such that £{£,) is the radiation pattern of U, In

other words, we wish to determine the possible patterns. We are able to give

necessary and sufficient conditions for a function of f(^) to be a pattern of some

U. We can do even more and give an estimate for the location of the sources j then

we know that certain patterns, whose sources or singularities are too close together,

cannot be generated.

This, of course, is primarily a mathematical problem because we require

that the asymptotic relation hold exactly for all directions} it will be shown that
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if we were content with getting this expansion with a function f^(4) which ap-

proximates f(4), the problem would be much easier.

The main result of this paper is a criterion for determining whether

or not a prescribed function f(4) is admissible as a pattern. This criterion also

enables us to determine the radius of the smallest sphere containing; the sources which

generate the pattern.

2, Formxtlation of the Problem

Let the vector of coordinates in a three-dimensional Euclidean space

be denoted by (x) and let

(1) (x) - R(C) ,

where (C) is the unit vector in the direction of (x) . Let U(x) be a solution of

(2) AU + k^ - ,

where Ic is a positive constant such that for |x| > C, U(x) satisfies the Soraraer-

feld radiation condition

(3) lira R(i^ - ildJJ -
R ->oo v?'' /

uniformly for all directions

o

The purpose of this paper^ then^ is to discuss the asymptotic relation

ikR

(U) U(R?) ^ "V" ^^^^

or more precisely

ikR AN
($) U(R4) - ^ f(4) + Oj^j ,

where the function f(£,) depends on the direction only. This function f(4)

is defined to be the radiation pattern of the function U(x).
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There are two aspects of this problem of radiation patterns. The first

is to prove (5) and express f(C) in terms of U(x)} the second is to find a func-

tion U(x) having a given radiation pattern f(4). This last problem involves de-

termining the class of fxinctions f(4), defined on the unit sphere, which may occur

as radiation patterns. This class is not the class of continuous functions nor is

it the class of analytic functions j it can best be characterized by considering an

associated class of harmonic functions H(x) • The order of magnitude of H(x) gives

a criterion as to whether or not f(C) can be a radiation pattern.

We formulate and prove these properties in

Theorem 1« A necessary and sufficient condition for a function f(?)

defined on a uirLt sphere to be a radiation pattern is that there exist

a harmonic function H(x) which is analytic for all (x) and is such that

H(C) " f{K) on the unit sphere, and further has the property that

where C is a non-negative constant. Then there exists a function U(x)

which satisfies the radiation condition and the differential equation

2
Au + k U -

for |x| > C } this function is such that

ikR /^\
U(RC) - ^ f(4) + ON^j .

It must be noted here tliat the constant C appearing in the hypothesis of

the theorem gives the radius of the sphere outside of which U(x) is defined. This

can be seen to imply that the sources generating the given pattern are located with-

in a sphere of radius C. Therefore the smallest C for which the conditions of our



'h-

theorem are satisfied determines the radius of the smallest sphere with center at

the origin containing all the sources generating a given pattern.

It should be noted that the sources related to a given pattern are not

uniquely determined at allj this will be discussed in a subsequent paper. We do

show in the present paper, however, that the test formulated in our theorem pro-

vides a way of determining the minimum sphere enclosing the sources for a given

pattern. For if C is the smallest of all numbers C for which the assumptions

of our theorem hold, we know that it will not be possible to generate the pattern

f(4) by sources which are entirely inside a sphere with center at the origin whose

radiiis is smaller than C .
o

We have one immediate consequence of the theorem. Let us assume that

f(4) vanishes on a portion of the sphere which has non-zero measure. Then from

potential theory we know that the harmonic function H(x) vanishes on the whole

sphere, so that f(4) must be zero everywhere. Therefore we cannot have a radia-

tion pattern which vanishes over any finite angle.

However, if we demand merely that the radiation into that angle be

arbitrarily small, we may be able to find svuah a radiation and we are even able

to concentrate the soiu-ces at the origin. This could be done by approximating

the pattern f(4) by spherical harmonics. As is well known, any continuously dif-

ferentiable function f(4) may be represented as a unifromly convergent series of

spherical harmonics S (4) of the order n:

00

fU) - £: (-1)" s^(4) .

n=o

Putting —I / ,

\

/ . \ n+1 ikr

5? "(2n+l)/2 ^^^ -
-J=>

—
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we then find that ^

n»o

is regular for |x| > 0, satisfies the radiation conditions, and possesses the

asymptotic expansion

il«r N „ . , ikr N

U(r4) = ^ E. (-i)'' \(0 - -=^ V II (-i)\(^).

V^r n=o >^^ n»o

where the pattern

ji=o

gives an approximation of f(S) to an arbitrary degree of exactitude if we make N

large enough.

Thus the connection between the radius C and the pattern f(C) as expressed

in our theorem is a purely mathematical relation which is of interest only if we

want to represent a certain given pattern exactly.

In the next section we shall obtain the properties of the radiation

field of a given pattern. The results are summarized as Theorem 2. In the last

section we shall show that these properties are sufficient to determine the field

from a given pattern uniquely. These results are summarized in Theorem 3» TheorenB

2 and 3 together are equivalent to Theorem 1.

3, The Radiation Pattern of a Given Field

We introduce the following notations. Let.

^n'-^'
= J^ Wl)/2 <"' '

(6)
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where k is fixed. Then we have for |x| > I7I the addition theorem in the form'- -'

|x - yl n»o

where (CU) is the scalar product of the unit vectors (C) and {%) defined by

(8) (x) - |x| (C) J (y) = |y| (U) .

P (t) denotes the Legendre polynomial of degree n in t. The series (7), as well as

its termwise derivatives with respect to |yLis uniformly convergent for -I—L > a > 1.

|y|
First we shall obtain a representation of a solution of (2) in a series

of spherical harmonics.

Lemma 1; Let U(x) be a solution of the equation

AU + k^ =

for |x| > C, which satisfies

lim r(|^ - iku) - 0} U(RC) - 0(i)

R —> 00

uniformly for all directions. Then U(x) can be expanded in a series

U(x) - £ ^J|x|)S^(0 ,

n=o

where the S (4) are spherical harmonics of order n» This series

converges uniformly for all |x| with |x| > C > C.

(9)

Erom Green's theorem we have for any R > C and R > |x| > C

^iklx - yl ^„ ;, ikjx - y]

|x - y| ^'^ '^ |x - y|
|y|"C

gik|x - yl ^u 3
^ik|x - y|^ - U 5-

dn onI on on
I IX - y| |x - y|

yl-R
"
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where the differentiations and integrations are with respect to y and the deriva-

tives ^— are to be taken in the direction of the exterior normals on the boundaries
on

of the region C < |x| < R. Because of the -radiation conditions, the second in-

tegral vanishes as R -> oo and we get

From (7) we find

(11) U(x) = ^ £ (2v-.l)^(lxl) / P^a?L)[vC) i*<(C)U
v=o

" |y|=C

dS .

y

Since each of the integrals

(12) C2va)/ P^(«U)[V<=) 1 *»„'<: '"j-iSy • V«>

represents a spherical harmonic of order v, we have proved our Lemma.

From the power series expansion of Y (C) we have for v ->oo

(13) |T^(C) - y J 2^2v+l)/^ p(2v+3)/2 I
- ^(^0+5)/^ '

where C is fixed and A is a suitable constant. This gives the asymptotic relation

/n,N ^ fn\ <^ /n"* /kJ2v+l)/2 C^
(lU) V^^^y2 ¥ p(2v.3)/2 '

which is valid for fixed positive k and C and for v -^oo. for our purposes we

only need

(15) ^v'« ' "(r^TV^) •

In a similar manner we can also obtain

(16) t;(c) - o((^|^,.
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Equation (12) then gires

(16a) \S^U)
I
< A Y^ ,

(kC)^

where A is a suitable constant independent of v and (C)»

For a fixed n and for r -^co, the K. (r) have the asymptotic expansion

If we use

(18) 'U(r4) - EI ^(r)S^ (^)
n"o

and insert the expansion (17) termwise it would seem that

(19) U(r«) . i^ ±. t (-i)-*l S^(«) * o[\)^ n=o \r /

holds for r -^00. However, we cannot conclude this result from (1?) immediately,

since (17) does not hold uniformly with respect to n, and the interchange of limits

when passing from (l8) to (19) for r -^^oo has to be Justified.

Consider the integral representation

L+ooi

(20) ^^(r) - -(-i)''VF /' e^^\(t)dt .

The integral satisfies the same second-order differential equation as ^^^(r). More-

over, as it is readily seen after integration by parts, the integrand is singular

for r and for r -^ oo :

l+ooi
ikr

(21) / e^^ P^(t)dt = £1- .
I * o/^l

^1+0 i
^'' ^

Thus we get (20) by comparing (17) and (2l)»
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Now,

(22) P^(t) = i / (t + i v4 - t^' cos ^ d0 .

Since for < s,

(23) |1 + isl + iyi-(l + is)^'
I
< (s + 2) ,

we have for non-negative s

(2U) |P^(1 + is)| < (s + 2)'' .

Then, since

(25) P^(t) = (2n - l)Pj,_i(t) + (2n - S)P^^^it) + ...

we get from (2U)

P^(l + is) « o[(is + 2)^]

(26)

P^(l + is) - o[n(x + 2)"-^] .

These estimates hold uniformly with respect to n and s for all non-negative s.

More generally, we have londer the sase conditions

(27) P^^^l + is) - o(n^s + 2)""^.

We form the expression

(28) iZf(t) - -v^ 2 S (C)(-i)\(t) ,

n«o

and regard it as a function of (§) and t. Because of (I6a) this series converges

for all t and we have from (26)

/cx) rkC(s + 2)]" \ / ,^ \
(29) I0(l + is)| = /r i-— —\^ o(kCse^^)

}
\n=o I (n) / \ /

This series ends with P (t) if n is odd and with P^it) if n is even, so that the series
contains less than n terms. '



-10-

where k and C are fixed and where ^ (t) " jT • i-quations (29) hold uniformly

with
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00

(35) f(4) - -i- £_ (-i)""*^ S„(4)

Now we summarize our resiilts in

Theorem 2; If U(x) is a solution of

AU + k^ »

for |x| > C which satisfies the radiation conditions

lim R( 1^ - ikU) = Oj U(R4) = 0(|)
R -> 00

uniformly for all directions, then U(x) can be expanded as

CO

U(r4) = £1 S (4) tiiT) ,^^— n n

and this expansion is uniformly convergent for all r > C > C.

The spherical harmonics S (4) are such that we may associate with

U(r4) an integrsd harmonic function

H(r4) = H - J^ r (-i)"*^ rX(^)
7F n^o "

such that

Ix|=R

for all e > 0. The asymptotic behavior of U for r -> co can be

derived from H by
ikr /, \

U(re) = ^-^ H(6) + 0/-^ .

The main part of the result, the estimate for the order of magnitude of

H, is obtained as follows. The expressions on the right-hand side of (I6a) are

coefficients of a power series of an entire function, and this function majorizes.

U. The Field Corresponding to a Given Radiation Pattern

We now prove the converse of Theorem 2.
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Theorem 3; Let H(x) be an integral harmonic function and let

C and k be positive numbers such that

/ |H(x)|2dS - o(e2^(^*^)^)

for all c > 0. Then there is a uniquely determined function

U(x) which satisfies the equation

AU + k^ =

and the radiation conditions, and ^rfiich has the SLsymptotic

expansion ^^
U(r4) - 2__ H(0 + o/^j

for r -* 00.

The harmonic function H(x) can be written as

(36) H(r4) - £ r\(?) '

n=o

where the spherical harmonics S (4) are uniquely determined.

Put

kl-1
Then

(38) / |H(x)|2dS . r2£ R2nc2 . ofe^^^^
* ^)^)

|x|-R

Let S .(4) be a system of (2n + 1) orthonormal spherical harmonics of

order n. Then any spherical harmonic S (4) can be expressed in the form

2n+l
(39)

u.v^' n. «js„,j(«) .
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Moreover - -^

9„^, 2n+l

or for (4) - C^),

,„., 2n+l 9
(to) ^ C I3„,j(«>l' .

Schwarz's inequality then gives

,2 , 2n+l S!.*!
, ,2

and since the S .(4) are orthonormal.

'j'^" / l^n^^^l^*^ - ^n

Thus we get

Therefore

(U5) £ r\(4) - o/£ 7? r^ C^
n«»o I n=o

For any positive a > 1 we have

(U6)

00 _ n_ 12 ^ n ^ . s2n -2 _/2k(C + 6)ar\

J n»o a n-o ^ 'n=o

and thus for all 6 > we get

(U7) 2 r\(C) = o(e^(^ * ^^-) .

Therefore
00

(U8) -ikJI S^(S)P^(1 + is) « Jif(l + is)*— n n
n=o

0^£(s.2)\(C)j - o4^(^^«)«^ ,
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and the function

(li9) U(rS)
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(57) |:"(^^) - -~-i^(l) * of^

This proves that the function U(r4) satisfies the radiation condition and also

that it has the asymptotic expansion

(58) U(r,5) » si- H(C) + of^ ,

since we have from (US)

(59) ;2f(l) - -ik 2 V^^ " "^^^ •

n=o

To complete the proof of Theorem 3 it only remains to be shown that U(x)

is uniquely determined by the asymptotic expansion (58). Suppose there were two

functions satisfying the conditions of Theorem 3» Then their difference U would

satisfy

(60) AU^ + k^Q =

and from (58) it follows that

(a) U^(rC) - o[^

then identically zero, and thus the uniqueness of U(x) is demonstrated.

uniformly for all directions. From Rellich's Lemma'--'-' it can be shown that U is
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